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Evidence for benzocyclobutenon#),g2 in the presence of
bases, reacting through an enolate intermediate has largely been
circumstantial due to the reduced reactivitylpfelative to similar
compounds, and the instability of the first formed proddcts.
Presumably, the unusual reactivity btan be explained on the eI ——
basis of the antiaromatici8electron system and the strained 4.010 4.000 3.950 3.980 ppm
cyclobutyl ring, which destabilizes the enolate upon formation. Figure 1. Representative change in the partidl NMR spectra at 400
Herein, we report the second-order rate constants for the deuteMHz (obtained in CDG at 25°C) of benzocyclobutenondl for the
rioxide and general-base-catalyzed deprotonatiohmf quinu- reversible deprotonation inJD at 25°C and pD= 12.5 catalyzed by
clidine in DO at 25°C, | = 1.0 (KCI). 0.44 M quinuclidine (= 1.0, KCI). A function of the protium remaining
Evidence for the generation of the enolate of benzocyclobuten-in 1 and 1-D (f4) and the time at which the sample was collected is
one has come about through the generation of d2@&cheme indicated beside the appropriate spectrum.
1) which was rationalized on the basis of initial enolate addition
to another benzocyclobutenone molecule and subsequent rearScheme 1
rangement of the initially formed aldol produétDirect evidence 0 0

for the formation of the enolate has been reported for the reaction kpo[DO] @l:f
of 2-methylbenzocyclobutenone, where the aldol product has been . + kg[B] o~
isolated’ and for the reaction of benzocyclobutenone, where the B 1-E
enolate was trapped with chlorotrimethylsilénin both cases, NaH kpop
the carbanion was generated in THF-&8 °C, using lithium DMF + kgp[BD']
tetramethylpiperidide. o

As with the studies described above, we found that the 0
o-protons ofl are considerably less labile than those of related 0.0 ©i
carbonyl compounds. The source and a measure of the relative D H
magnitude of the change in reactivity of tleprotons of1 o 1-D

compared to structurally similar compounds such as 2-indahone, 2

2-tetralon€?® 2-benzosuberon®, and phenylacetone Kp = )

~16)8was of particular interest. In answering these questions ~ Proton transfer at thei-carbonyl methylene unit ol was

we have shown thatl-E can be generated under aqueous catalyzed by quinuclidine s = 12.1fin DO at 25°C, | =
conditions and the reaction can be followed by observing the 1.0 (KCI);'® and was followed using 400 MH#H NMR.™ The
extent of deuterium incorporation into the starting material, by €xchange of the methylene protons for deuterium was followed

H NMR (Figure 1)8°
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by comparison of the area of the upfield shifted triplet for CHD,

(10) (a) The reactions df (4—5 mM) were initiated by dilution of a stock
solution of 1 in CDsCN (1 M) into a DO solution containing quinuclidine
buffer. At timed intervals a 1.5 mL aliquot was removed and acidified with
DCI. This was then extracted with CD{which was dried via passage over
a MgSQ column in a Pasteur pipet. The CRQGolutions obtained in this
manner were stable indefinitely but the spectra were usually obtained with
36 h of the generation of the sample. (b) The pD was measured before the
reaction was initiated and after the reaction was completed. The pD was
obtained by adding 0.4 to the observed pH reading. (Glascoe, P. K.; Long, F.
A. J. Phys. Chem196Q 64, 18—190.)

(11)*H NMR spectra were obtained using a Varian Mercury 400 MHz
instrument with probe temperature maintained at°25and the samples
dissolved in CDG. All chemical shifts are reported relative to CH@t 7.27

ppm.
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Figure 2. Dependence of the observed rate constant for deuterium
exchange into benzocyclobutenorg (kowsg 0N the concentration of the
basic form of quinuclidine in BD at 25°C andl = 1.0 (KCI). (@) kobsd

for exchange for deuterium at pB 12.5 ([B])/[BD*] = 2.5). (®) Kobsd

for exchange for deuterium at pB 12.0 ([B])/[BD*] = 0.79) wherekopsd

has been corrected féno = 1 x 1074 M1 s71, Inset: Representative
logarithmic plot offy vs time for the exchange of deuterium intpas
catalyzed by quinuclidine buffer ([B- BH'] = 0.27 M, pD= 12.48) in

D,0 at 25°C and! = 1.0 (KCI).

at 3.989 ppm (Figure 1), to the area for the unreacted, @H
4.005 ppm. These areas were then used to calciyaecording
to eq 12 The observed rate constants for deuterium incorporation
were obtained by plottinf according to eq 2 (see inset in Figure
2 for an example of such a plot).

The kopsa Values were then plotted versus the concentration of
the basic form of the quinuclidine buffer as seen in Figure 2.

The second-order rate constant for the deprotonation of benzo-

cyclobutenone catalyzed by the basic form of quinuclidine was
found to bekg = 7.2 x 1076 M~1 s71, Experiments performed at
different buffer ratio¥* fall on the same correlation line (see Figure
2) leading to the conclusion that it is the basic form of the buffer
that is catalyzing deprotonation. In addition, the nonzgro
intercept in Figure 2 indicates thiaf,ssconsists of both a buffer-
catalyzed reaction and a deuterioxide-catalyzed reaction (see e
3). For the experiments performed at pP12.5, kpo[DO™] =
5.2 x 1077 s71, which gives a second-order rate constant for the
deuterioxide-catalyzed reaction kfo = 1 x 107* Mt 71,130

As previously determined, we found tHiatvas very susceptible

to aldol addition and rearrangement upon extended exposure to.

the reaction conditions used heré® related observation was

that as the total buffer concentrations were lowered, the onset of

observable amounts @ (by *H NMR) occurred earlier in
deuterium incorporation experimertsThis observation is in
accord with other studies of this type where deuterioxide ai@l D
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Table 1. The K, Values and Rate Constants for the
Hydroxide-Catalyzed Deprotonation for a Variety of Carbonyl
Compounds

pKa kio (M~1s7Y) kel
1 7.1x 105" 1
acetone 193 0.1149 1.6x 1C°
2-indanone 122 22C¢¢ 3.1x 108
2-tetralone 1219 376 5.3x 10°
2-benzosuberone 14.9 3.7 5.2x 10¢
ethyl acetate 25% 1.2x 1049 1.7

ake values are relative téyo for 1. P Calculated fromkpo for 1
and assumingkpo/kno = 1.4 (ref 16).© Reference 179 Statically
corrected for one methyl group of acetongd = 0.22 Mt s71, ref
18).¢1 = 0.1, at 25°C; ref 7c,d.fI = 0.1, at 25°C; ref 7d.9 Rate
uncorrected for the number of ionizalkeprotons,| = 1.0, at 25°C;
ref 9b.

tend to fall below the Brgnsted correlations for the buffers used
to protonate and deprotonate the compounds of int&ré&tThis
provides an explanation for why previous atterifitso observe
deuterium incorporation intd did not yield the deuterated
product.

We have shown that the-protons ofl are considerably less
reactive than the-protons of compounds with similar structure
(see ke in Table 1 for a comparison the relative rates of
deprotonation by hydroxide). Comparison of the rate for hydroxide-
catalyzed deprotonation afvs 2-indanone suggests that there is
approximately an 89 kcal/mol difference in the activation energy
for the deprotonation. This large energy difference between
superficially similar systems indicates that the transition state
leading tol-E must be considerably less stable than the transition
state for the formation of the enolate of 2-indanone. Two possible
sources for this destabilization are ring strain and antiaromaticity.

We conclude that-E can be reversibly formed in the presence
of hydroxide and general-base catalysts. Ring strain upon forma-
tion of the carbanion undoubtedly plays a role in the relative
instability of 1-E but it has been shown for cyclobutanon&{p
= 19.6)° that ring strain has a small effect on th&pof the
a-protons as compared to aceton&{p= 19.3)}” The similarity
of the second-order rate constants for the hydroxide (see Table)

%nd quinuclidine-catalyzed deprotonationlofks = 7.2 x 1076

M~1s71) and ethyl acetatdg = 2.4 x 10> M~1s7%, pK, = 25.6f°
suggests that reactivities of tlehydrogens ofl more closely
resemble those of ethyl acetate than those of the structurally
related compounds (see Table 1). Thus, antiaromaticity must play
a large role in the destabilization ®fE relative to the enolate of
2-indanone or possibly inhibit enolate formation.
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